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Experiments on the motion of gas bubbles in
turbulence generated by an active grid

By R. E. G. P O O R T E† AND A. B I E S H E U V E L
J. M. Burgers Centre for Fluid Mechanics, University of Twente,

PO Box 217, 7500 AE Enschede, The Netherlands

(Received 24 October 2000 and in revised form 18 December 2001)

The random motion of nearly spherical bubbles in the turbulent flow behind a grid
is studied experimentally. In quiescent water these bubbles rise at high Reynolds
number. The turbulence is generated by an active grid of the design of Makita (1991),
and can have turbulence Reynolds number Rλ of up to 200. Minor changes in the
geometry of the grid and in its mode of operation improves the isotropy of the
turbulence, compared with that reported by Makita (1991) and Mydlarski & Warhaft
(1996). The trajectory of each bubble is measured with high spatial and temporal
resolution with a specially developed technique that makes use of a position-sensitive
detector. Bubble statistics such as the mean rise velocity and the root-mean-square
velocity fluctuations are obtained by ensemble averaging over many identical bubbles.
The resulting bubble mean rise velocity is significantly reduced (up to 35%) compared
with the quiescent conditions. The vertical bubble velocity fluctuations are found to
be non-Gaussian, whereas the horizontal displacements are Gaussian for all times.
The diffusivity of bubbles is considerably less than that of fluid particles. These
findings are qualitatively consistent with results obtained through theoretical analysis
and numerical simulations by Spelt & Biesheuvel (1997).

1. Introduction
Fundamental to the understanding of turbulent dispersed two-phase flows is knowl-

edge of the Lagrangian statistics of particles, droplets or gas bubbles and their re-
lationship to the Eulerian statistics of the turbulent flow fields. A classic study on
this topic was carried out by Snyder & Lumley (1971). They introduced small solid
particles with different sizes and densities (corn, copper, hollow glass, solid glass)
in decaying isotropic turbulence behind a grid in a vertical wind tunnel. From the
trajectories the particle velocity autocorrelation functions were calculated, for which
corrections had to be applied to account for the decay of the turbulent flow field.

The experimental work discussed in our paper resembles that of Snyder & Lumley
(1971). It is concerned with the statistics of the motion of gas bubbles in grid-generated
turbulence in a vertical water tunnel. The bubbles have diameters of about 1.0 mm, so
that in quiescent water they rise rectilinearly with a speed of about 25 cm s−1 (hence at
a Reynolds number of the order 250) while maintaining an approximately spherical
shape. An analysis of this problem, together with results from numerical simulations,
has recently been presented by Spelt & Biesheuvel (1997). In part, our study is aimed
at providing an experimental check on that theoretical work.

† Present address: Shell International Exploration and Production BV, PO Box 60, 2280 AB
Rijswijk, The Netherlands.
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Compared with Snyder & Lumley (1971), the present study avoids analysing large
numbers of photographs to determine the trajectories and applying corrections for
the decay of the turbulence. This is achieved by letting the bubble rise upwards
towards the grid through which the water is flowing downwards. By adjusting the
mean velocity of the water the bubble can be made to move randomly within in
a relatively small interrogation section at an arbitrary position behind the grid.
Sampling the position of the bubble with a CCD camera in order to calculate its
Lagrangian statistics would require excessively large image processing time and data
storage. Hence an alternative method is developed herein based on that employed
by Call & Kennedy (1991). They illuminated part of the test section with a laser
and projected the light scattered from droplets in an air jet onto a special type of
photo multiplier. This method is very efficient because the position of the droplets
can be retrieved directly from the analogue signals of the photo multiplier. We have
improved its accuracy by employing a specially designed position-sensitive detector,
rather than the quadrant detector used by Call & Kennedy (1991).

In order to allow significant intensity of the turbulence (hence a sufficiently large
turbulence Reynolds number Rλ) and variation in the lengthscales of the turbulence
an active grid such as designed by H. Makita and his colleagues (Makita 1991;
Makita & Sassa 1991) was used. The rods of this bi-plane grid have agitator wings
attached to them which are actively flapped in a random manner. As shown by
Makita (1991), Makita & Sassa (1991) and Mydlarski & Warhaft (1996), and herein,
the structure of the turbulence that is generated conveniently depends on the mode of
operation of the grid. Typically, it has much higher intensity and larger lengthscales
(exceeding the mesh width) than the turbulence behind a conventional static grid, and
so larger values of Rλ can be obtained. The isotropy, as measured by the one-point
and two-point velocity correlation functions, is not as good as that in the flow behind
static grids, but was improved herein by simple methods.

The paper is organized as follows. The main results of the analytical work of
Spelt & Biesheuvel (1997) on the motion of bubbles in isotropic turbulence are first
summarized in § 2. The experimental facility and diagnostics are described next in
§ 3. This includes novel aspects of the design and performance of active grids, and a
new technique of bubble tracking. In § 4 the experimental results are presented and
compared with theoretical predictions. These concern statistical properties such as
the mean rise velocity and the variance of the velocity fluctuations of the bubbles. It
will be shown that the rise velocity of the bubbles can be significantly reduced, by
as much as 35%. The horizontal bubble displacements are found to be Gaussian for
all times; the vertical displacements on the other hand show a slight departure from
Gaussianity. The bubble diffusion coefficients are significantly smaller than those of
fluid particles. There is a reasonable agreement between theory and experiments.

2. Theory for spherical bubbles in weak turbulence
The mean rise velocity and diffusivity of spherical bubbles in isotropic turbulence

were calculated analytically by Spelt & Biesheuvel (1997, referred to herein as SB) for
the special case of turbulence of weak intensity. They are summarized in this section
and compared with the experiments in § 4.

For a spherical bubble rising at high Reynolds number in a turbulent liquid flow a
reasonably accurate equation of motion is (Sene, Hunt & Thomas 1994; Auton, Hunt
& Prud’homme 1998)

dV

dt
= 3

DU

Dt
− (V −U )×Ω− 1

τb
(V −U )− 2g, (1)



Motion of gas bubbles in active-grid-generated turbulence 129

where V (t) is the bubble velocity at time t, U = U (X (t), t) denotes the liquid velocity
and D/Dt its material derivative at the position X (t) of the bubble, Ω = ∇ × U is
the vorticity of the liquid at the position of the bubble, g is the acceleration due to
gravity and τb (= a2/18ν = VT/2g) is a time constant (a is the bubble radius, ν is the
kinematic viscosity of the liquid, and VT is the terminal rise velocity of a bubble in
still fluid). Support for the use of this equation is given by Legendre & Magnaudet
(1998).

A lengthscale L is defined in terms of the Eulerian energy spectrum function of
the turbulence E(k) as

1

L ≡
∫ ∞

0

kE(k)dk
/∫ ∞

0

E(k)dk, (2)

and a non-dimensional turbulence intensity β and a non-dimensional lengthscale L∗
by

β ≡ u0

VT
, L∗ ≡ L

τbVT
,

in which u0 is the root-mean-square fluid velocity fluctuation The present work is
restricted to the special case of weak turbulence of ‘intermediate’ lengthscales, i.e.

β � 1, β �L∗ � 1

β
, (3)

for which it is possible to simplify the equation of motion, and to calculate analytically
the mean rise velocity V of a bubble using a method proposed by Maxey (1987) for
rapidly settling small solid particles. The result is

V − VT ' −π
2

∫ ∞
0

kE(k)dk, (4)

which can be rewritten using (2) and

3
2
u2

0 =

∫ ∞
0

E(k)dk, (5)

as

V − VT
VT

' − 3
4
πβ2 1

L∗ . (6)

This explicitly shows the role of L∗ and hence of L. Result (6) expresses that a
spherical bubble moving at high Reynolds number is on average slowed down by
isotropic turbulence. As explained by SB, bubbles move under the action of fluctuating
lift forces in a lateral direction towards regions where the downward fluid velocity
has a maximum and the upward fluid velocity has a minimum. This slows down the
bubbles because (i) viscous forces make the bubbles adapt their speed to the fluid
velocity fluctuations, which on average are directed downwards along the bubble
path, and (ii) the lateral motion induces a lift force in the downward direction.

The magnitude of L∗ depends on the spectrum. SB performed numerical ex-
periments in isotropic turbulence with a Kraichnan spectrum function and a von
Kármán–Pao spectrum function, generated by the method of Kinematic Simulation
(Fung et al. 1992), for values up to β = 1. They found excellent agreement with (6)
for small values of β. Some experimental support for the slowing down of high-
Reynolds-number bubbles exists (Eppinger 1995), but (6) has not yet been checked
explicitly.
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The dispersion of the bubbles can be quantified by a diffusivity. SB calculated this
statistic under the same assumptions as above and found that the vertical diffusivity
is given by

Dx(∞) ' βu0L11, (7)

with L11 the longitudinal integral scale of the turbulence, and the horizontal diffusivity
by

Dy(∞) ' 1
2
βu0L11 + 1

4
πτ2

bVT

∫ ∞
0

kE(k)dk. (8)

Introducing the non-dimensional integral scale µ = L11/(τbVT ), the latter expression
can also be written as

Dy(∞) ' 1
2
βu0L11

(
1 +

3π

4µL∗
)
. (9)

These results coincide with the corresponding expressions for small solid particles
(Csanady 1963; Nir & Pismen 1979) except for the second term on the right-hand
sides of (8) and (9), a term that increases the lateral diffusivity and which is associated
with the lift forces acting on the bubbles. In weak turbulence with large characteristic
lengthscales the contribution due to the lift forces on high-Reynolds-number bubbles
is not important, and in that case the diffusivities of the gas bubbles are identical to
those of small solid particles, with the lateral diffusivity being half the longitudinal
diffusivity.

A discussion of the dispersion of high-Reynolds-number bubbles in isotropic tur-
bulence of high intensity (β ' 1) and large characteristic lengthscales (L∗ � 1) may
be found in Spelt & Biesheuvel (1998). The case of low-Reynolds-number bubbles
in isotropic turbulence of very high intensity (β � 1), when lift forces are also not
important but the acceleration reaction of the bubbles plays a significant role, was
studied by Wang & Maxey (1993a) and Maxey, Chang & Wang (1994). The literature
on the gravitational settling and dispersion of small solid particles in turbulent flows
is extensive; examples of studies that are relevant to the present work include Mei,
Adrian & Hanratty (1991, 1997), Wang & Maxey (1993b) and Mei (1994).

3. Experimental facility and diagnostics
The experimental facility and the measurement techniques are described in this

section. The water tunnel, the apparatus that generates the gas bubbles, the methods
to determine the parameters that characterize the gas bubbles and the turbulence are
discussed briefly; the configuration and performance of the active grid and the bubble
tracking device, comparitively novel techniques, are described in more detail. A more
extensive discussion is given in the thesis of Poorte (1998), on which this paper is
based.

3.1. Water tunnel

A recirculating water tunnel with a vertical test section was used in the experiments.
The length of the test section is 2.00 m, its width is 0.45 × 0.45 m2. Three walls are
made of 19 mm thick glass. The fourth wall is made of stainless steel, and through
three portholes in this wall probes can be installed in the test section.

The instantaneous volume flow rate was measured with an electromagnetic flow-
meter (Danfoss Magflo Mag 3100). A computer controlled pump (Egger RPP 300)
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delivered a time-average volume flow rate of 0.049–0.49 m s−1 in the test section,
constant within 0.6%.

Free-stream turbulence, swirl and non-uniformities in the mean flow are reduced
by suitably chosen screens and a smooth contraction of area ratio 4. Without the
turbulence generator, the mean velocity was uniform within ±2.0%, while the turbu-
lence intensity was less than 1.2% in the core region (82% of the width of the test
section).

The tunnel was filled with tap water, that was de-ionized first to remove calcium-
ions that would turn the windows of the test section opaque. The water was refreshed
about every 4 weeks. To remove contamination as much as possible, the water was
filtered continuously through a bypass at a rate of about 10 l min−1. Bubbles that are
injected in the test section will ultimately be transported to other parts of the water
tunnel. These bubbles were removed by a passive bubble trap.

3.2. Measurement of the turbulence velocity field

The turbulence velocity field (without the bubbles) was measured with a two-
component backscatter LDV system (Dantec) using the particles that were naturally
present in the water as seeding. It was verified that a correction for velocity bias was
not necessary.

Moments of the velocity components, up to fourth-order, were calculated using
modified versions of software developed at the Technical University of Delft. Two-
point correlations were calculated with the slotting technique with local normalization
(Tummers & Passchier 1996), assuming the validity of Taylor’s frozen turbulence hy-
pothesis (the largest turbulence intensity is 19.3%). Direct estimates of energy spectra
were determined by an FFT with variable windowing of the measured correlation
function, while the method proposed by van Maanen & Oldenziel (1998) was used
to estimate the high-frequency parts. Here one first fits an analytic function with six
free parameters to the measured autocorrelation function and subsequently trans-
forms that fit analytically. Compared to a direct calculation, this method increases
the accuracy of the spectral estimate considerably for high frequencies.

The longitudinal integral scale was computed from the measured autocorrelation
coefficient:

L11 = U

∫ ∞
0

u(t)u(t+ τ)

(u(t)2u(t+ τ)2)1/2
dτ,

where U is the mean streamwise velocity and u is the streamwise velocity fluctuation;
in what follows v denotes the lateral velocity fluctuation. The dissipation of turbulent
kinetic energy ε was computed both from the transport equation for the turbulent
kinetic energy (in which it is permissible to neglect the terms related to velocity
skewness and pressure–velocity correlations)

U
d

dx

(
3

2
u2

0

)
= −ε,

with u2
0 = (u2 + 2v2)/3, assuming lateral homogeneity, and from

ε = 15ν

∫ ∞
0

k2
1F11(k1) dk1,

where k1 is the longitudinal wavenumber and F11(k1) is the streamwise power spectrum
of the longitudinal velocity fluctuations u. The two estimates of ε were within 5%.
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The Taylor microscale λ was determined from

ε = 15ν
u2

0

λ2
,

valid for isotropic turbulence, and the Kolmogorov lengthscale, timescale and velocity
scale were estimated from their definitions

ηK =

(
ν3

ε

)1/4

, τK =
(ν
ε

)1/2

, vK = (νε)1/4.

Finally, the lengthscale L was computed from

1

L = − 16

3π

∫ ∞
0

1

r

∂f

∂r
dr,

in which f(r) is the longitudinal velocity correlation. This expression can be shown
(Spelt 1996) to be equivalent to the definition (2) and is more convenient to evaluate,
as an analytical expression for f and its derivative is available from the van Maanen
& Oldenziel (1998) algorithm mentioned above.

The experimental uncertainties in L, µ and λ were 6%, 5% and 3% respectively;
those in U and u0 were 1.6% and 3% (95% confidence level).

3.3. Active grid

3.3.1. Grid specifications and forcing protocols

Figure 1 shows photographs of our active grid. Its design follows that of the grids
of Makita (Makita 1991; Makita & Sassa 1991) and Mydlarski & Warhaft (1996),
though there are some variations. Table 1 gives the grid specifications. The bars of
these bi-plane grids have agitator wings, and by rotating each of the grid bars in a
controlled way (the forcing protocol) a flapping motion of the wings with specified
statistics can be created. In the synchronous mode of operation the rods have constant
angular velocity Ωm, equal in magnitude but with opposite sign (i.e. direction of
rotation) for adjacent rods. In the studies mentioned above another forcing protocol
was also used in which the rods have angular velocities Ωm or −Ωm for a duration of
time that is chosen randomly, say from a set [∆Tmin,∆Tmax]; we will refer to this as the
single-random asynchronous mode of operation. For reasons explained below, we have
also tried a new forcing protocol in which both the rotation speed and the duration
are chosen randomly from the sets [−Ωm,Ωm] and [∆Tmin,∆Tmax], respectively; this
the double-random asynchronous mode of operation.

The grid-generated turbulence in the earlier studies appeared to have some defi-
ciencies which, as will be shown here, can be overcome by simple modifications of
the grid geometry and the forcing protocol.

First, Makita (1991) and Mydlarski & Warhaft (1996) report that the turbulence
generated by their active grids contains distinct periodicities which appear as spikes in
the energy spectrum. This can be understood by considering an active grid working in
the synchronous mode with angular velocity Ωm. The geometry of the grid is invariant
under rotation through an angle of π rad, so that the fluid streaming through the
grid is periodically forced with period 1/(2Ωm). If the mean velocity of the fluid is
U, structures with an extent U/(2Ωm) in the longitudinal direction will be created at
the grid. These structure will fade only partially as the flow develops. Obviously, the
energy spectrum would show distinct spikes at frequency 2Ωm, and possibly at higher
harmonics.
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(a)

(b)

Figure 1. The active grid. (a) Overview, showing some of the DC motors. (b) Details of rods and
agitator wings; the wings are mounted in staggered orientation.

Mydlarski & Warhaft (1996) report that the periodicities remain with the single-
random asynchronous mode of operation. Note that the probability distribution
function of the rotation speed Ω of such a protocol is

pdfSR(Ω) = 1
2
δ(Ω − Ωm) + 1

2
δ(Ω + Ωm),

and so has two spikes, i.e. at −Ωm and Ωm. This means that the flow is still forced
predominantly with a single frequency. By contrast, the double-random asynchronous
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Mydlarski & Present
Makita (1991) Warhaft (1996) work

Fluid air air water
Number of rods 30 16 24
Rod diameter (mm) 6.0 6.4 5.0
Mesh width M (mm) 46.7 50.8 37.5
Wing chord (mm) 45.3 49.0 35.4
Wing aspect ratio 4.0 4.0 4.0
Wing thickness (mm) – 0.38 1.0
Mechanical forcing stepping stepping DC

motors motors motors
Angular velocity Ω (r.p.s.) 2.0 2.0–4.0 0.2–12.8
Test section width 15M × 15M 8M × 8M 12M × 12M
Test section length 128M 80M 53M
Mean velocity U (m s−1) 5.0 3.2–14.3 0.30
ReM = UM/ν 15.6× 103 10–48× 103 11.3× 103

Table 1. Main characteristics of active grids.
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Figure 2. Longitudinal one-dimensional energy spectrum measured at x/M = 11.8 and grid
Reynolds number ReM = 11 250 with the double-random asynchronous mode of operation DR2
(Ωm = 8.20 r.p.s., ∆Tmin = 0.05 s, ∆Tmax = 0.24 s). The solid curve is the directly computed spectrum,
the dotted line is the estimate for high frequencies obtained with the van Maanen & Oldenziel
(1998) algorithm. The dash dotted line has slope −5/3. The vertical axis is in arbitrary units.

mode of operation has a uniform probability distribution function

pdfDR(Ω) =

{
1/(2Ωm), Ω ∈ [−Ωm,Ωm],

0, elsewhere.

Using this type of forcing protocol it was found that the spectrum was free from
periodicities, even close to the grid. A typical example is given in figure 2, which
shows the spectrum of case C in table 2.

The second deficiency described in Makita (1991), Makita & Sassa (1991) and
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Case A B C D E F

Protocol DR1 DR2 DR2 DR3 DR1 DR1
Ωm (r.p.s.) 1.37 8.20 8.20 8.20 1.37 1.37
∆Tmin (s) 0.05 0.05 0.05 0.05 0.05 0.05
∆Tmax (s) 1.46 0.24 0.24 0.73 1.46 1.46
Q (l s−1) 60.75 60.75 60.75 60.75 60.75 60.75
x/M 16.9 6.9 11.8 29.0 48.2 6.9
u0 (mm s−1) 30.4 55.8 40.9 31.7 16.3 57.8
U (mm s−1) 306.4 296.6 299.2 303.4 316.3 294.2
u0/U % 9.92 18.8 13.7 10.4 5.14 19.3
u′/v′ 1.10 1.06 1.09 1.16 1.08 1.04
L11 (mm) 45.4 33.8 53.1 89.2 76.9 26.3
L (mm) 3.8 2.6 4.3 8.5 9.0 1.4
λ (mm) 3.9 2.8 3.7 6.4 6.5 2.5
ηK (mm) 0.18 0.11 0.15 0.24 0.32 0.10
τK (ms) 31 13 23 54 109 11
vK (mm s−1) 5.7 8.6 6.6 4.3 3.0 9.7
Rλ 125 160 158 198 101 143
Su 0.14 0.22 0.16 0.14 0.08 0.23
Fu 3.03 2.92 2.99 2.79 2.88 2.90

Table 2. Experimental conditions: parameters of the grid-generated turbulence. The first three
symbols refer to the asynchronous mode of operation of the grid in which the rotation speed of
the rods and the duration of that rotation were chosen randomly from the intervals [−Ωm,Ωm] and
[∆Tmin,∆Tmax], respectively. The other symbols indicate the volume flow rate Q in the test section,
the distance downstream from the active grid x/M, the turbulence intensity u0 and the mean fluid
velocity U; L11 is the longitudinal turbulence integral scale,L is the intermediate lengthscale defined
in (2), λ is the Taylor microscale, and ηK , τK and vK are the Kolmogorov lengthscale, timescale and
velocity scale, respectively. The microscale Reynolds number Rλ varies between 101 and 198. The
ratio of the r.m.s fluid velocities in the longitudinal and lateral directions u′/v′ and the value of
the skewness of the streamwise velocity fluctuation, Su, quantify the departure from isotropy. Fu is
the flatness of the streamwise velocity fluctuation.

Mydlarski & Warhaft (1996) is the strong anisotropy of the turbulence close behind
the active grid. To find the reason for this we carried out a series of experiments with
single-random asynchronous modes of operation chosen similar to the ones used in
those studies, but with the agitator wings mounted on the rods in a staggered, instead
of parallel, arrangement. A parallel orientation of the wings on the grid creates
obstructions to the flow that are much larger in the lateral direction (' 2.5M) than in
the streamwise direction (' M). This effect is expected to be less pronounced with a
staggered orientation of the wings. This simple change of the grid configuration has a
positive effect on the isotropy of the generated turbulence as illustrated in figure 3(a),
in which data for the downstream evolution of u′/v′ = (u2/v2)1/2, the ratio of the root-
mean-square values of the longitudinal and lateral velocity fluctuations, are compared
with the data obtained by Makita & Sassa (1991); here both grids worked in the single-
random asynchronous mode. Our protocols had identical time structure (∆Tmin =
0.05 s, ∆Tmax = 0.20 s) while the velocity varied: Ωm = 0.50, 6.25 and 12.50 r.p.s. for
SR1, SR2 and SR3 respectively. A double-random asynchronous mode of operation
yields even better results as illustrated in figure 3(b), while figure 3(c) makes clear that
the disadvantage of the staggered wing orientation is a reduction of the turbulence
intensity; a consequence of the lower time-average solidity of this configuration. The
intensity, though, is still higher than that found with a conventional static grid.
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Figure 3. Comparison between the performance of the active grid of Makita & Sassa (1991), with
parallel orientation of the agigator wings and single-random asynchronous mode of operation, and
that of our grid, with staggered wing orientation and the option of a double-random asynchronous
mode of operation. (a) Downstream evolution of the ratio of the root-mean-square longitudinal
and lateral velocity fluctuations in the single-random (SR) mode of operation. Ωm = 0.50, 6.25
and 12.50 r.p.s. for SR1, SR2 and SR3 respectively. (b) As (a), but with our grid working in the
double-random mode DR2 (table 2). (c) Downstream evolution of the root-mean-square streamwise
velocity fluctuation.
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Figure 4. Dependence of the macrostructure of the turbulence behind the active grid on the
forcing protocol. This structure is represented by the values of the turbulence intensity u0 and
the longitudinal integral scale L11, made dimensionless by the mesh width M = 37.5 mm and the
mean fluid velocity U = 0.30 m s−1, or by two parameters associated with a bubble of radius 1.0
mm; the terminal rise velocity VT = 0.27 m s−1 and the relaxation length τbVT = 3.37 mm. Solid
symbols are at fixed downstream position x/M = 20 for various modes of operation of the grid
(solid triangle: synchronous mode, solid circle: double-random asynchronous mode; solid square:
static agitator wings at ±45◦ with mean flow). Open symbols and solid lines are for a fixed forcing
protocol but varying downstream position x/M (open triangle: DR2; open circle: DR3). Dotted
lines indicate curves of constant turbulence Reynolds number Rλ. In all cases the grid Reynolds
number is ReM = 11 250.

3.3.2. Grid performance

By choosing the forcing protocol of the active grid (i.e. the mode of operation, the
angular velocity Ωm and the time intervals ∆Tmin and ∆Tmax) it is possible to vary
the longitudinal integral scale L11 and, to a lesser degree, the turbulence intensity u0.
This is illustrated in figure 4. For a given protocol (open symbols) the turbulence
intensity decreases with distance downstream, while the longitudinal integral scale
increases. For every forcing protocol such a decay curve exists (two are shown). Thus,
by choosing the forcing protocol and the downstream position x/M it is possible to
generate a turbulent velocity field with the desired values of u0 and L11, without the
need to vary the mean velocity U. This makes the active grid a very convenient tool
for investigations of the motion of bubbles in grid-generated turbulence, because the
velocity and time scales of the turbulence can be changed independently of those of
the bubbles. As an example, the values of β = u0/VT and µ = L11/(τbVT ) that can be
obtained for a bubble with 1 mm diameter are indicated on the axes in figure 4.

The lowest integral scale is obtained if the grid is stationary with the agitator wings
at ±45◦ angle of attack with the mean flow. Any motion of the grid, in the regime
investigated, leads to a turbulent flow with larger integral scale; the largest scale we
could obtain at x/M = 20 is about 2.4M. Since the turbulence intensity u0 and the
integral scale L11 depend on the forcing protocol so does the turbulence Reynolds
number Rλ, since this varies approximately as (u0L11/ν)

1/2. We obtained values of Rλ
between 90 and 200. In figure 4 dotted lines indicate curves of constant Rλ.
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All the experiments on bubble motion in grid-generated turbulence reported below
have been performed with the grid working in the double-random asynchronous
mode. Three forcing protocols were used, denoted DR1, DR2 and DR3. Values of
the angular velocity Ωm and the time intervals ∆Tmin and ∆Tmax of these protocols,
together with some of the properties of the turbulence at the various measuring
stations x/M are listed in table 2. In all these experiments the grid Reynolds number
was ReM = 11 250.

Figure 5 shows that the turbulence generated by protocol DR1 has good lateral
homogeneity, even close to the grid (x/M = 5). Similar velocity profiles were obtained
for the other protocols at x/M = 5 and x/M = 20. It was found that in the core
region (i.e. |y/M|, |z/M| 6 4) of the measuring section: (i) the variations in the mean
velocity in the longitudinal direction, U, were within 2.0% of the mean centreline
velocity, (ii) the variations in the mean velocity in the lateral direction, V , were
within 1.6% of the mean streamwise centreline velocity, and (iii) the variations of the
root-mean-square turbulence velocities in the longitudinal and the lateral directions,
u′ and v′ respectively, were within 5.4% of their value at the centreline. This good
homogeneity is attributed to the active mixing of the flow by the agitator wings and
the large turbulence diffusivity downstream of the grid.

The decay of the turbulence energy could be described well by a power law of the
form

U2

u2
0

= B
( x
M

)n
.

The values of the decay coefficient B and the decay exponent n was found to be
different for each of the protocols: B = 1.59, n = 1.41 (DR1); B = 3.51, n = 1.04
(DR2); B = 4.08, n = 0.87 (DR3). A dependence of the decay coefficient n on the
forcing protocol was also noted by Ling & Wan (1972) in their experiments with
another type of ‘mechanically agitated’ grid.

As a further test of the isotropy of the turbulence we measured the longitudinal and
lateral velocity correlation functions f(r) and g(r), which for incompressible isotropic
turbulence should be related by (e.g. Batchelor 1953)

g(r) = f(r) + 1
2
r
∂f

∂r
. (10)

The results are shown in figure 6; the solid circles are measured values of f(r), the
solid triangles are data for g(r). To check (10) an analytic description of f(r) was
first obtained from the data with the van Maanen & Oldenziel (1998) algorithm, then
the right-hand side of (10) was evaluated using this description; the result is shown
as a solid line. For small separation distances the agreement between the ‘isotropic’
g(r) calculated in this way and the measured one is good, which suggest that the
turbulence is locally isotropic. For larger separations the measured g(r) is slightly
lower than the isotropic value, which suggests a small departure from isotropy at the
large scales. Nevertheless, the agreement found here is considerably better than that
reported previously by Makita (1991).

It appears then that with these modifications the one-point and two-point velocity
correlations of the turbulence behind our active grid are close to the isotropic values.
This is not true however, for three-point velocity correlations. In isotropic turbulence
the skewness of the streamwise velocity component S(u) should be 0 because of
invariance under reflection of the coordinate system. For static grids S(u) is typically
less than 0.04 at x/M > 50 (e.g. Mohamed & LaRue 1990). Turbulence behind active
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Figure 5. Lateral homogeneity of the turbulence at x/M = 5, generated with protocol DR1.
(a) Mean velocities in the streamwise direction (U, circle) and the transverse direction (V , square).
(b) Root-mean-square velocity fluctuations in the streamwise direction (u′/U, circle) and the trans-
verse direction (v′/U, square), and their ratio (u′/v′, diamond).

grids displays much larger velocity skewness: Makita (1991) finds a value of 0.188
for S(u) at x/M = 50, Mydlarski & Warhaft (1996) report similar values behind their
active grid, and we too find S(u) in the range 0.05–0.35, depending on x/M and the
type of protocol.

3.4. Bubble generation

Small bubbles of well-controlled size are generated with the method of Ooi & Acosta
(1984). In a separate vessel air is made to flow through a small needle (Hamilton,
i.d. 0.15 mm) at a rate that can be finely adjusted between 0.1 and 300 mm3 s−1 with
a micrometering valve. This needle is placed vertically in a steady uniform upward
liquid flow of low turbulence intensity. By varying the liquid velocity a stream of small
bubbles of nearly identical size is generated. The (adjustable) equivalent diameters
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Figure 6. Measurements of the longitudinal and lateral velocity correlation functions f(r) (solid
circles) and g(r) (triangles). The curve is an estimate of g(r) calculated by applying the relation
g(r) = f(r) + (r/2)∂f/∂r to an analytic expression for f(r) based on the data. (Protocol DR2 with
x/M = 14.1, u0/U = 12%, Rλ = 157, ReM = 11 250.)

are between about 0.3 and 1.9 mm. After its generation a bubble rises upwards and is
then captured in a funnel, after which it is transported by a small liquid flow (typically
less than 100 cm3 s−1) through a tube (i.d. 3 mm) into a probe with the same inner
diameter. From the probe the bubble is finally injected into the test section at any
desired location.

The average size of the bubbles was determined by collecting bubbles, letting
typically 20 of them coalesce to form a larger bubble, and then passing that bubble
as a plug of gas through a narrow capillary of known inner diameter. The equivalent
diameter ae of the bubbles in the test section can then be inferred from a measurement
of the length of the gas plug. The terminal rise velocity of the bubbles in quiescent
liquid VT was measured with the bubble tracking system described below, by averaging
over typically 200 bubbles. This was done before and after each experimental run
(such a run lasted typically 5 hours). In such an experiment the root-mean-square
variation of the rise velocity of the bubbles was always less than 3%; hence, in each
experimental run the bubble radius was constant to within ±1.5%.

The terminal rise velocities measured (table 3) were 1–15% lower than those found
by Duineveld (1995) for bubbles in highly purified water. However, for ‘dirty’ water
the rise velocity of a bubble of 0.57 mm (0.34 mm) would be 0.129 m s−1 (0.076 m s−1),
according to the findings of Bel Fdhila & Duineveld (1996), which is clearly much
lower than the values we obtained. It can thus be concluded that the water in the
tunnel is effectively clean. In his thesis Duineveld (1994, p. 127) mentions that bubbles
with an equivalent radius larger than about 0.34 mm behave in fresh tap water in
the same way as in hyperclean water. It appears then that our water filtering system
maintains the water quality at a level of purity which is only slightly less than that of
fresh tap water.

The bubbles slowly dissolve into the water, and this was found to noticeably affect
the average rise velocity in the turbulent flow some 40 s after injection in the test
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Case A1 B1 C1 D1 E1 F1 B2 F2

ae (mm) 0.57 0.57 0.57 0.57 0.57 0.57 0.34 0.34
VT (m s−1) 0.248 0.279 0.254 0.277 0.246 0.273 0.126 0.135
τb (ms) 15.3 17.3 15.7 17.1 15.2 16.9 6.2 6.2
Re 283 318 289 315 280 311 84 91
We 0.96 1.22 1.00 1.19 0.94 1.16 0.15 0.17
β 0.123 0.200 0.161 0.115 0.066 0.212 0.443 0.428
µ 11.9 7.0 13.3 18.8 20.6 5.7 43.0 31.2
L∗ 0.97 0.52 1.05 1.75 2.35 0.30 2.44 1.15
λ∗ 1.03 0.58 0.93 1.35 1.74 0.54 3.56 2.97
T (s) 338 236 625 630 536 475 1269 462
Nvalid 1226 1330 2830 1492 1632 2403 6670 2673

Table 3. Experimental conditions: parameters of the bubbles. The letters A to F refer to the corresponding cases in table 2. The symbols ae, VT and
τb denote, respectively, the equivalent radius, the rise velocity in still fluid and the relaxation time of the bubble, and Re and We are the associated
Reynolds number and Weber number. The bubble parameters are related to those of the turbulence through the non-dimensional turbulence intensity
β = u0/VT , turbulence integral scale µ = L11/(τbVT ), intermediate scale L∗ = L/(τbVT ), and Taylor lengthscale λ∗ = λ/(τbVT ). The total bubble
observation time is denoted T , and Nvalid is the number of bubbles in the ensemble used to determine the statistics of the bubble motion.



142 R. E. G. Poorte and A. Biesheuvel

section. Since the time that elapsed from the injection of a bubble to the end of
the measurement of its trajectory was at most 10 s during the experimental runs,
the dissolution did not significantly affect the bubble size (constant to within 2%).
Thus, the estimated variation in β and L∗ (defined in § 2) is less than 3% and 6%,
respectively.

The viscous relaxation time of the bubbles was calculated from the relations (see
van Wijngaarden & Kapteyn 1990)

τb =
a2
eqQ(χ)

18νlG(χ)
(11)

=
VT

2g
Q(χ)

(
1 +

H(χ)

Re1/2
+ O(Re−5/6)

)
, (12)

based on the well-known theory of Moore (1965). Here χ is the ratio of the lengths
of the major and the minor axes of a bubble, assumed to have an ellipsoidal shape.
G(χ) and Q(χ) are known functions and H(χ) is available in tabulated form. For
bubbles with equivalent radius larger than 0.5 mm τb was estimated from (12), using
the measured VT and values of χ that were estimated from figure 3 of Duineveld
(1995). For smaller bubbles the O(Re−5/6) term cannot be neglected and so (11) was
used. (For example, in the cases mentioned in table 3, χ has the value 1.17 for the
bubble with radius 0.57 mm, and 1.0 for the bubble with radius 0.34 mm.)

3.5. Bubble tracking technique

The vertical component and one of the horizontal components of the position of an
isolated bubble were measured with a specially developed bubble tracking technique.
The set-up (figure 7) consists of: (i) sending optics to illuminate a bubble in the test
section of the water tunnel, (ii) receiving optics that collect light scattered by the
bubble, (iii) a position-sensitive detector which provides electrical signals from which
two coordinates of the bubble position can be determined, (iv) analogue equipment
to analyse these signals, and (v) a computer to acquire, process and store the data.

A position-sensitive detector (PSD), rather than a high-resolution CCD camera,
is used for measurement of bubble position, since a PSD can offer both high time
resolution (sample frequency 1800 Hz for the present set-up) and high effective spatial
resolution (typically 1: 600). A further advantage of a PSD is that the position
of a single bubble is directly proportional to the electrical signals. Determining the
position therefore does not require time-consuming image analysis or excessive storage
requirements (as would be needed for a CCD camera), which enables collection
and processing of large ensembles. A similar method was used independently by
Voth, Satyanarayan & Bodenschatz (1998) to track the motion of fluid particles
in turbulence, and a related method (with a somewhat different type detector) was
described by Call & Kennedy (1991).

The effective spatial resolution with which the bubble position could be measured
was limited by the signal-to-noise ratio of the electrical signals. To enhance the signal-
to-noise ratio, the signals were measured using coherent detection (e.g. Wilmshurst
1990) with three analogue single-phase Lock-In Amplifiers (Scitech 410). To enable
coherent detection the signal was modulated by mechanically chopping the lightbeam
in the sending optics at 3000 Hz. The effective bandwith was set to 300 Hz. For a
bubble of 0.5 mm radius the effective resolution was typically 0.10 mm in a measure-
ment volume of approximately 60×60×60 mm3. The analogue signals were processed
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Figure 7. Experimental set-up for tracking the bubble position. A, Xenon lamp; B, sending optics;
C, receiving optics; D, position-sensitive detector; E, preamplifier; F, lock-in amplifiers (one for
each channel) with additional low-pass filters; G, chopper; H, 12 bit AD-converter and computer;
I, spectrum analyser.

using a suitably chosen detection and validation scheme. Signals indicating that more
than one bubble at a time was present in the measurement volume were rejected.

The bubble velocity was determined using a modified central difference scheme
(Snyder & Lumley 1971)

V (ti) ≡ U +
X(ti + ∆t)−X(ti − ∆t)

2∆t

− X(ti + 3∆t)− 3X(ti + ∆t)− 3X(ti − ∆t) +X(ti − 3∆t)

24∆t
, (13)

in which the Eulerian mean fluid velocity U and the bubble position X are measured
in the laboratory frame. For this O(∆t2) scheme the spectral transfer function remains
unity (as it should) within 10% for frequencies up to about 66 Hz for the time step
chosen in our experiments (for an ordinary central difference scheme this already
occurs at a frequency that is a factor of 2.44 lower). Reducing ∆t further would
increase this frequency but also increase the mean-square error in the bubble velocity.

Averaged quantities are calculated from an ensemble of identical bubbles. Since
the time Ti that a bubble spends in the measurement volume is a random variable,
care must be taken to ensure that ensemble-averaged bubble statistics are unbiased.
The averaging operator

A[f] ≡
N∑
i=1

Tifi

/ N∑
i=1

Ti (14)

was used as approximation to the ensemble average E[f]. Here fi is the time average
of quantity f of bubble i which was in the measurement volume during time Ti. A
straightforward calculation (after Bendat & Piersol 1971, ch. 6) demonstrates that
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A[f] is a consistent and unbiased estimator, that tends to the ensemble average E[f]
asymptotically.

The ensemble-averaged statistics were obtained from at least 1200 bubbles or 230 s
total bubble observation time (see table 3). The ensemble-averaged statistics were
checked in several ways. The statistically stationary of each ensemble was checked
by dividing the entire ensemble chronologically into 10 sub-ensembles. For each
sub-ensemble the mean vertical velocity was constant to within ±1.5%, while the
root-mean-square velocities were constant to within ±3.5%. It was checked whether
the bubbles statistics were independent of Ti, as should be the case if the statistics
are unbiased. The mean velocity was independent of Ti to within the statistical
variability. However, the root-mean-square velocities were found to decrease with Ti,
thus indicating a transit time bias in this particular statistic. This decrease is attributed
to the finite size of the measurement volume: bubbles with large root-mean-square
velocity will disperse fast, hence will not stay long in the measurement volume (small
Ti). Typically bubbles with Ti less than 0.1 s had a 10% larger root-mean-square
velocity than bubbles with Ti larger than 0.9 s, so that this transit time bias is not too
serious.

4. Experimental results
4.1. Experimental conditions

The motion of the bubbles was studied in six different turbulent velocity fields
constructed by varying the parameters of the forcing protocol of the active grid and
by varying the location of the measurement volume with repect to the grid. These
velocity fields were verified to have nearly isotropic first-order and second-order
statistics. Table 2 lists the relevant flow parameters. The spectrum of case C is shown
in figure 2; the shape of the spectrum is similar for the other cases. Cases A, B and
C have about equal L11 but different u0. Cases A and C (as D and E) have about
the same L and λ, but different u0. Cases B and F have nearly equal L11, u0 and λ
but different L. Case F has the highest u0 and the smallest L and thus is expected
to induce the strongest inertia effects. Case E has the smallest u0 and is expected to
induce the largest effects of drift. The mean velocity was chosen at about 0.3 m s−1

so that the bubbles would be convected slowly downwards past the measurement
volume.

The parameters associated with bubbles are listed in table 3. Each result represents
the average over at least 1200 bubbles or 230 s total observation time. Most of
the experiments shown (cases A1–F1) were carried out for bubbles with 0.57 mm
radius, about the same size as was used by SB in their numerical experiments. A few
experiments (cases B2 and F2) were conducted with smaller bubbles, radius 0.34 mm,
to obtain higher values of the non-dimensional turbulence intensity β. Note that the
bubble radius was in all cases larger than the Kolmogorov lengthscale, yet smaller
than the Taylor microscale. The volume fraction of gas in the test section was always
less than 0.01%, sufficiently small to assume that the turbulence structure is not
modified by the presence of the gas bubbles.

4.2. Mean bubble velocity

Our experimental results concerning the mean rise velocity of spherical gas bubbles
in grid-generated turbulence are presented in figure 8; the labels correspond to those
in table 3. Error bars indicate the experimental uncertainty, which is about 6% of VT .
For comparison the theoretical and numerical results of SB have been included; the
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Figure 8. Deviation of the mean velocity of rise of a bubble in grid-generated turbulence from
its value in still fluid, V − VT , made dimensionless with VT . The dashed curve is the analytical
result for weak turbulence of intermediate scales of Spelt & Biesheuvel (1997). The open symbols
are their data obtained with numerically simulated turbulence with a Kraichnan energy spectrum
(square: λ∗ = 1, µ = (π/2)1/2) or a von Kármán–Pao energy spectrum (triangle: λ∗ = 1; circle,

µ = (π/2)1/2). Solid circles are experimental data for bubbles with radius 0.57 mm, solid diamonds
for bubbles with radius 0.34 mm. Labels (A1–F1, B2, F2) refer to cases in table 3. Typical errorbars
are indicated.

dashed curve is the analytical result for weak turbulence (6), a result that is expected
to hold if condition (3) is satisfied. The numerical data of SB (open symbols) are for
spherical bubbles of 0.5 mm radius (VT = 0.2725 m s−1, τb = 13.9 ms). Rather than β,
as in figure 3 of SB, we took β/

√L∗ as the abscissa. This scaling, suggested by (6),
should make it easier to compare results obtained for different spectra. Note that for
spherical bubbles β/

√L∗ = u0/
√

2g/L is independent of the bubble parameters.
First, the experiments show that turbulence of the surrounding liquid, even if this

is isotropic, can lead to a remarkable reduction in the speed of rise of gas bubbles; a
reduction that can be as high as 35% depending on the statistics of the turbulence
and the size of the bubbles.

In more detail, it is found that except for case F1, the measured mean rise velocities
differ from the theoretical predictions by less than 9% of VT , even though only in
cases A1, C1, D1 and E1 is condition (3) strictly satisfied. For cases B1 and F1,
which give higher mean rise velocities than predicted by the theory, L∗ is not large
compared to β (cf. tables 2 and 3) so that a good agreement between theory and
experiment would be fortuitous. In cases A1 and E1 the experiments show an increase
in mean rise velocity, which clearly disagrees with the theoretical prediction, and for
which we have no explanation.

Despite this, an overall difference between theory and experiment of less than 9%
is good, and we believe that this is indirect evidence for the validity of the equation
of motion of the bubbles (1). In the derivation of this equation it is assumed that
the liquid velocity and its gradients can be approximated by linear functions on the
scale of the bubble; so formally the ratio of the bubble radius to the Kolmogorov
lengthscale ae/ηK should be small compared to unity, for the equation to be applicable.
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This condition is not satisfied in all the experiments (ae/ηK is about 3 for the cases
C1, B2 and F2) yet the agreement with a theoretical consequence of the use of this
equation of motion is good. This suggests, as was assumed by SB, that the restriction
on the ratio ae/ηK can be relaxed.

The presentation of the numerical data of SB in the scaling shown in figure 8 also
leads to an interesting new result. The numerical results for a Kraichnan spectrum
function and a von Kármán–Pao spectrum function with equal non-dimensional
integral lengthscale µ = L11/(τbVT ), collapse on a single curve for all values of

β/
√L∗; note that these spectra have different non-dimensional Taylor microscale

λ∗ and intermediate scale L∗. On the other hand, the numerical data for a von
Kármán–Pao spectrum with a constant λ∗ equal to that of the Kraichnan spectrum
is seen to behave quite differently. Thus it appears that the mean rise velocity of the
bubbles depends on just two dimensionless numbers: β/

√L∗ and µ. Data obtained for
turbulence energy spectra with equal dimensionless integral scale µ collapse on a single
curve when plotted against β/

√L∗, and all these curves parameterized by µ converge

to the single curve (6) found by SB, as β/
√L∗ becomes small. In other words,

V − VT
VT

= − 3
4
πβ2 1

L∗F(β/
√L∗, µ),

where F is a dimensionless function with the property that F = 1 in the limit
β/
√L∗ → 0, at arbitrary µ. At finite (but fixed) β/

√L∗, F decreases if µ increases.

4.3. Bubble velocity fluctuations

The measured probability density function of the bubble velocity in the direction of
gravity, pdf(Vx), is shown for case F1 in figure 9(b) and for case B2 in figure 10(b). For
comparison numerical results obtained from Kinematic Simulation by Spelt (1996)
are shown in figures 9(a) and 10(a). In each of the cases the median of the p.d.f. occurs
at a velocity less than VT , indicating that the bubbles are slowed down on average.
For comparison, Gaussian distributions are included. These are defined by the mean
and variance of the bubble velocity. The variance was corrected for uncorrelated
noise.

The numerically calculated p.d.f. in Figure 9(a) is significantly asymmetric: the
probability that the vertical bubble velocity is about VT or much less than the
average (less than 0.1 m s−1, say) are both larger than would be expected for a
Gaussian distribution with the same mean and variance (dashed line). Qualitatively,
the same behaviour is observed in the experiment (figure 9b). Quantitatively, the
behaviour is different (though the values of β and L∗ are comparable for simulation
and experiment, the values of µ and λ∗ are quite different). The asymmetric shape
of the p.d.f. can be explained as follows. The flow fields in both simulation and
experiment correspond to weak turbulence with intermediate scales (i.e. β ≈ 0.2,
L∗ ≈ 0.4). In this regime the lift force drives the bubble preferentially into ‘downflow
regions’ (see SB). Suppose that fraction γ of the turbulence consists of ‘downflow
regions’ (the precise definition of these structures is irrelevant here) while fraction
1− γ consists of other structures. The preferential attraction of bubbles to downflow
regions implies that the fraction of time a bubble spends in these regions is larger
than γ. Hence the contribution of downflow regions to the statistics of the bubble
velocity will also be larger than γ, which means that the probability of a bubble
velocity much lower than VT is higher than that for a Gaussian distribution. Since
the area under the p.d.f. must remain unity, the probability must be lower than that
of a Gaussian p.d.f. for other velocities.
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Figure 9. Probability distribution function of the vertical bubble velocity. Dashed lines are Gaussian
fits. Vertical lines indicate Vx = 0 and VT , the rise velocity in still fluid. (a) Kinematic Simulation
by Spelt & Biesheuvel (1997) with a Kraichnan spectrum function (β = 0.18, µ = 1.25, L∗ = 0.47,
λ∗ = 1.0). (b) Experiment for case F1 (β = 0.21, µ = 5.70, L∗ = 0.30, λ∗ = 0.54).

For larger β and L∗ the numerically calculated p.d.f. (figure 10a) is asymmetric in
the opposite direction, and qualitatively the same is found experimentally for case B2
(figure 10b). As before, this asymmetry indicates that the statistics of the turbulence
sampled by the bubble is biased. However, the different shape of the asymmetry
indicates that the mechanism for this bias is different than in the case described
above. This point was also investigated by SB. They found differences in the statistics
sampled by the bubble, depending on the values of β and λ∗. As β increases: (i) the
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Figure 10. As figure 9 but for (a) VT = 0.27 m s−1, β = 0.66, µ = 5.01, L∗ = 1.88, λ∗ = 4.0,
and (b) case B2 (VT = 0.13 m s−1, β = 0.44, µ = 43.0, L∗ = 2.44, λ∗ = 3.56).

probability that a bubble is in an ‘eddy zone’ increases (their figure 6), and (ii) the
structures in which bubbles tend to accumulate change from ‘downflow regions of
large extent’ into ‘downwards flowing edges of vortices’ (their figure 7). A deeper
study into the interaction between bubbles and vortical structures in flow fields is
needed to give further insight.

Not shown here is that the p.d.f. of the velocity fluctuations in the lateral direction
was found to be close to Gaussian in all cases studied; it must be symmetric of course,
since the turbulence is homogeneous.

4.4. Dispersion of the bubbles

The displacement of a bubble is defined by X(τ) ≡ Xm(t + τ) − Xm(t), in which Xm

denotes the measured bubble position in the laboratory frame. The p.d.f. of the bubble
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Figure 11. Probability distribution function of the horizontal displacement of a bubble in a fixed
time lag for case C1. The time lags τ = 20, 90, 210 and 650 ms are approximately equal to λ/VT ,
λ/u0, L11/VT and L11/(2u0), respectively. Dotted lines indicate a Gaussian distribution.

displacement in the horizontal direction for case C1 is shown for four fixed values of τ
in figure 11. The measured distributions are close to Gaussian. For increasing τ, fewer
samples are available in the ensemble, hence the statistical variability increases with τ.
The same Gaussian behaviour was found for all other cases of table 3. This Gaussian
behaviour is consistent with the numerical results of SB at somewhat different values
of the parameters (Kraichnan spectrum, β = 0.53 and µ = 2).

The p.d.f. of the bubble displacement in the vertical direction for case C1 is shown
for two fixed values of τ in figure 12. Note that the maximum of the distribution
shifts to smaller X with increasing τ because the bubbles are convected in the negative
X-direction on average. The measured distribution of the vertical displacement is also
close to Gaussian. Nevertheless, unlike that of the horizontal displacement, it is slightly
skewed. This phenomenon can be understood from the skewness of the vertical bubble
velocity distribution shown in the previous section. The displacement of a bubble is a
time integral of the bubble velocity and therefore, if the velocity distribution is skewed,
one would expect that the displacement distribution is skewed in the same way.

A Gaussian displacement for all times implies that the dispersion can be described
by a diffusion process (e.g. Batchelor 1949), with an associated diffusion coefficient
that is a function of time. Now, a measure for the dispersion of bubbles by turbulence
is the mean-square displacement

D ≡ (X(τ)−X(τ))2,
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Figure 12. Probability distribution function of the vertical displacement of a bubble in a fixed time
lag for case C1. The time lags τ = 20 ms and 90 ms are approximately equal to λ/VT and λ/u0,
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which is related to the measured position by

D = (Xm(t+ τ)−Xm(t)− (Xm(t+ τ)−Xm(t) ))2

= (Xm(t+ τ)−Xm(t))2 − τ2(Vm)2,

since Xm(t+ τ)−Xm(t) = Vmτ. Note that this equality is valid for an arbitrary inertial
frame. Half the rate of change of D is called the diffusion coefficient

Dα(τ) ≡ 1

2

∂

∂τ
(Xα(τ)−Xα(τ))2, (15)

where α denotes the coordinate (no summation over Greek indices). The limiting
values of Dα for small and large times are

Dα(τ) =

 v2
ατ (τ→ 0),

v2
αTα (τ→∞).

(16)

Here v2
α and Tα are the mean-square bubble velocity and integral timescale, respec-

tively. If (i) the bubble velocity is statistically stationary and (ii) Tα is finite, the
limit for τ → ∞ of Dα(τ) exists and the limiting value, Dα(∞), is usually referred to
as the diffusivity. It is this diffusivity for which relations were given in § 2. To avoid
the errors due to differentiation with respect to τ a ‘pseudo-diffusion coefficient’ D′ is
computed as

D′α(τ) =
1

2τ

(
Xα(τ)−Xα(τ)

)2
.

If D tends to a constant value for large τ (as it should), then the values of D′ and D
will be equal at large τ. This allows one to infer the diffusivity D from the asymptotic
value of D′.

It was found in all cases that D/u0L11 < 0.08, which is considerably lower than the
diffusivity of fluid particles, Dfp/u0L11 = 0.53 (e.g. SB). This reduction is attributed
to the crossing trajectories effect (Csanady 1963), which becomes increasingly more
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Figure 13. Measured and simulated horizontal diffusivity, Dy(∞)/u0L11, plotted versus the theoreti-
cal diffusivity. Open triangles, numerical simulations, von Kármán–Pao spectrum with λ∗ = 1 (Spelt
& Biesheuvel 1997). Solid circles, experiments for cases A1, B1, C1, D1 and F1. Solid diamonds,
experiments for cases B2 and F2. Typical errorbars are indicated.

important with decreasing values of β. In figure 13 the measured lateral diffusivity,
i.e. the value for large τ of the diffusion coefficient defined by (15), is compared with
the theoretical result (9) derived by SB. That relation includes three non-dimensional
parameters (i.e. β, µ and L∗) which are varied simultaneously in the experiments.
To allow a comparison the experimental results are plotted versus the theoretical
result, which, it should be noted, is derived under the assumption that β is very small
compared to unity. Also included are data from numerical simulations of SB for a
spectrum with values of L∗ and µ that are comparable to those in the experiments.
It is found that the first two points of the numerical simulations (which correspond
to the lowest values of β, i.e. β = 0.053 and 0.111, respectively) coincide with the the-
oretical result. For larger values of β the numerically and experimentally determined
diffusivities are consistent with each other, but lower than the analytical result.

The above agreements between simulations and experiments for statistics that
depend on details of flow structures in the turbulence (e.g. the pdf(Vx) shown above)
are evidence that the Kinematic Simulation qualitatively captures the flow structures
relevant for the dispersion of the bubbles. Recently, Malik & Vassilicos (1999) reached
a similar conclusion concerning the relative dispersion of fluid particles; they found
good qualitative and satisfactory quantitative agreement between their data obtained
with Kinematic Simulation, and the DNS data of Yeung (1994).

5. Conclusions
The motion of spherical and nearly spherical bubbles in nearly isotropic turbulence

behind an active grid was investigated experimentally. The design of this active grid
followed that of the grids developed by Makita (1991) and Mydlarski & Warhaft
(1996) for use in wind tunnels. It was found that by minor changes in the geometry of
the agigator wings and in the forcing protocol that governs their random flapping the
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isotropy of the turbulence could be remarkably improved. With our grid, microscale
Reynolds numbers up to 200 could be achieved.

The motion of the bubbles was tracked with a novel optical technique that uses a
position-sensitive detector. This accurate technique, a modification of that developed
by Call & Kennedy (1991), allows the position in two dimensions of a single bubble
to be tracked. Compared with the traditional CCD camera the spatial resolution is
good, the time resolution is even better, and storage and processing times are orders
of magnitude less due to the analogue nature of the technique.

The experimental results on the bubble motion were compared with theoretical re-
sults and results from numerical simulations presented by Spelt & Biesheuvel (1997).
The reduction in average rise velocity of the bubbles depends on the structure of the
turbulence and can be as high as 35%. For weak turbulence with moderate character-
istic lengthscales, the experimentally determined reduction in average rise velocities
agreed within 9% with the theoretically determined value. This good agreement sug-
gests that the equation of motion used in the analysis applies well for the cases
considered, even though the bubble radius is not small compared to the Kolmogorov
lengthscale of the turbulence and in some of the experiments the bubbles were slightly
oblate (ratio of the major axis to the minor axis approximately 1.17).

Regarding the other statistics of the bubble motion, it was found that the p.d.f.s of
the lateral displacement and velocity are close to Gaussian for all cases considered. On
the other hand, the p.d.f.s of the longitudinal displacement and velocity are asymmetric
and hence non-Gaussian. The degree of departure from Gaussianity depends on the
values of the non-dimensional parameters that characterize intensity and lengthscales
of the turbulence in comparison to the bubble rise velocity and relaxation time (i.e. β,
L∗ and µ). This implies that the dispersion of the gas bubbles in the lateral direction
can be regarded as a diffusion process with a diffusion coefficient that is a function of
time. Formally this is not true for the dispersion process in the longitudinal direction;
but the departure from Gaussianity is small, so that a description as a diffusion
process may lead to useful results.

On all points where the experimental data could be compared with data for
turbulence generated by Kinematic Simulation (Spelt & Biesheuvel 1997) a good
qualitative (and in many cases, quantitative) agreement was found. This suggests that
Kinematic Simulation is of value for the prediction of the statistics of the motion of
spherical bubbles rising at high Reynolds number in turbulence of moderate intensity
(i.e. β small enough).

We shall now consider the impact of the above findings on bubbly flows in general.
The rise velocity of a bubble in still water VT and its viscous relaxation time τb are both
proportional to the square of the bubble radius ae. This implies that, in a turbulent
flow with given intensity, u0 and lengthscales L and L11 and the non-dimensional
parameters that characterize the bubble motion (i.e. β = u0/VT , L∗ =L/(τbVT ) and
µ = L11/(τbVT )) vary rapidly with bubble size. Since the statistics of the bubble motion
strongly depend on the values of these non-dimensional parameters, minor differences
in the size of the bubbles may result in substantial differences in the reduction of their
mean rise velocities or in the root-mean-square values of their velocity fluctuations in
grid-generated turbulence. This implies that bubbles of different sizes may contribute
in very different ways to the dynamics of turbulent bubbly flows. A theory that
assumes that the modification of the turbulence of the liquid phase depends on the
local void fraction alone, ignoring effects of the bubble size distribution, may be of
limited practical value.

The fact that the statistics of the bubble motion in grid-generated turbulence
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depends sensitively on the values of the non-dimensional parameters mentioned
above suggests part of the explanation of why upscaling of turbulent bubbly flows,
a common practice in the process industry, often has limited success. Discrepancies
between experiments at model scale and at full scale may well be related to significantly
different values of dimensionless parameters.
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